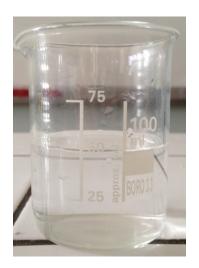

Physique-Chimie Cycle 3 - Classe de 6ème

Mélanges et corps purs

Comparaison

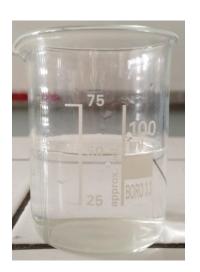

Eau du robinet

Eau d'un fleuve

Les mélanges...

Un mélange est un échantillon de matière constitué de plusieurs espèces chimiques.

Eau du robinet



Eau d'un fleuve

Les mélanges...

Un mélange est un échantillon de matière constitué de plusieurs espèces chimiques.

Un mélange homogène est un mélange dont on ne peut pas distinguer les constituants à l'oeil nu

Eau du robinet

Eau d'un fleuve

Un mélange hétérogène est un mélange dont on peut distinguer au moins un constituant à l'oeil nu.

Classer les mélanges

Eau et Huile

Mélange hétérogène

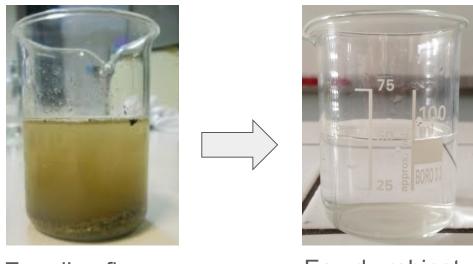
Eau et sirop

Mélange homogène

Farine et levure

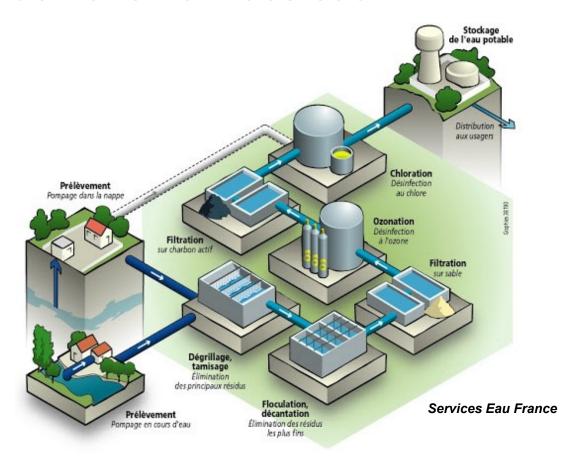
Mélange homogène

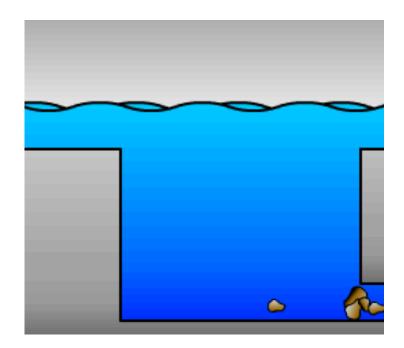
Eau pétillante


Mélange hétérogène

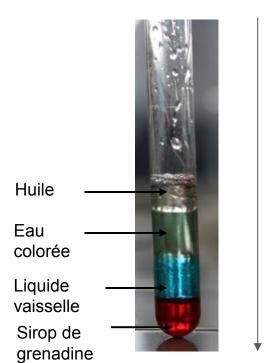
Réalise ton propre mélange hétérogène

Problématique


Comment passer d'un mélange hétérogène à un mélange homogène?


Eau d'un fleuve

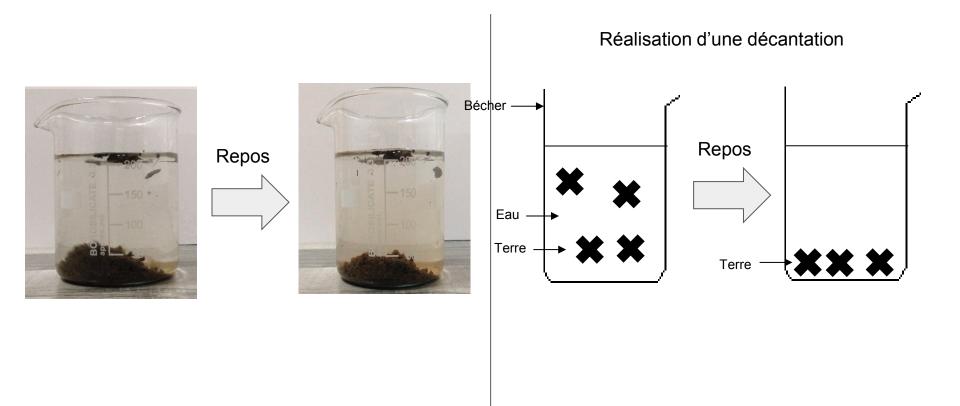
Eau du robinet


La station de traitement des eaux...

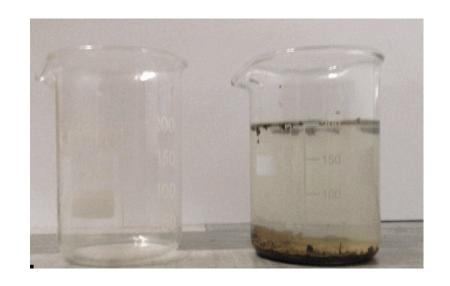
Etape de la décantation

Augmentation de la densité

Matériel et expérience



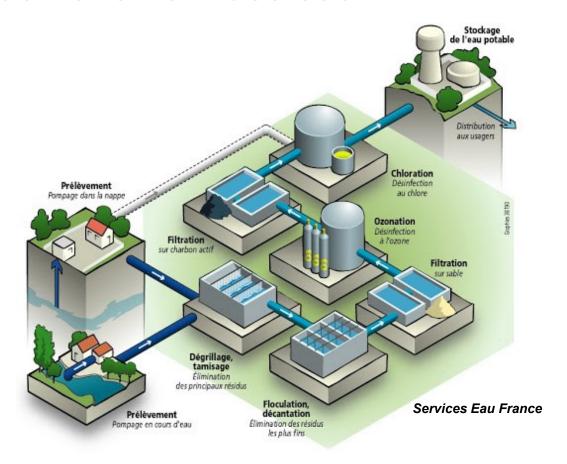
Eau boueuse

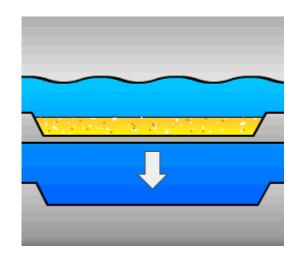


Agitateur en verre

Observations et schématisation

Séparation après décantation




Avant séparation

Après séparation

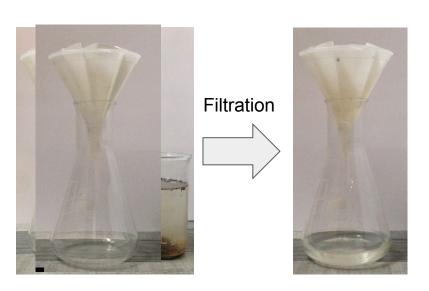
La station de traitement des eaux...

Filtration

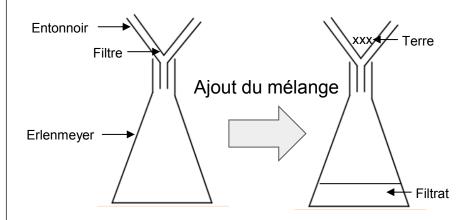
Filtration sur sable

Bassins de filtration à la station d'Autun

Matériel et expérience

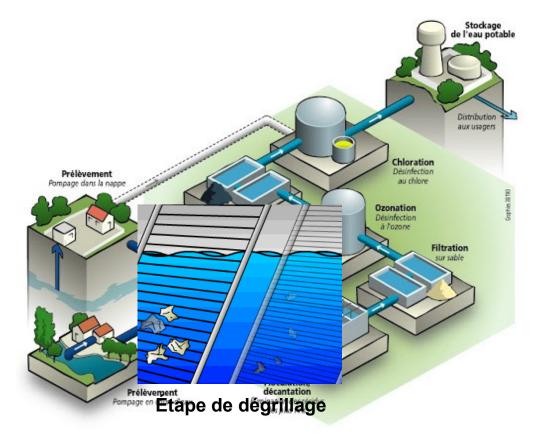


Matériel en classe



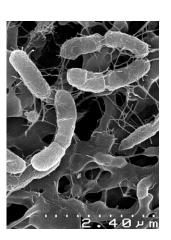
Matériel à la maison

Observations et schématisation


Réalisation d'une filtration

Filtration ou décantation, par quoi commencer ?

Filtre bouché


Potable?

Eau après filtration et décantation

Quelques micromètres

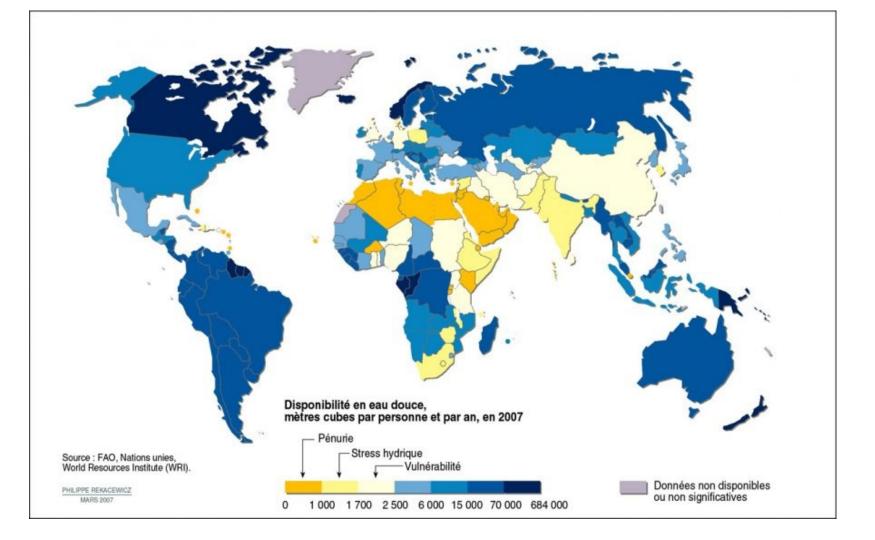
Virus

Quelques dixièmes de micromètre

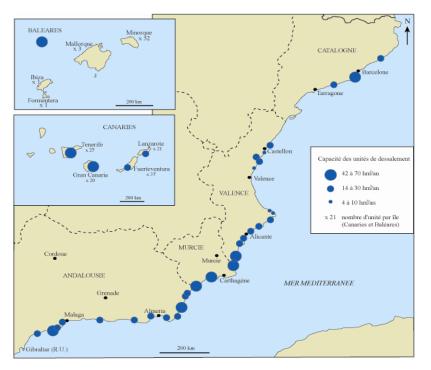
Ce que tu peux retenir

La décantation consiste à séparer les constituants en fonction de leur densité grâce à un temps de repos.

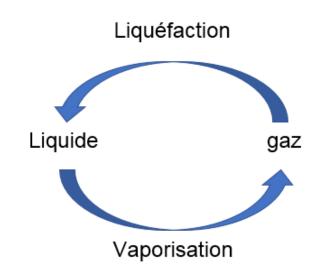
La filtration consiste à retenir, selon leur taille, certains constituants dans un filtre.



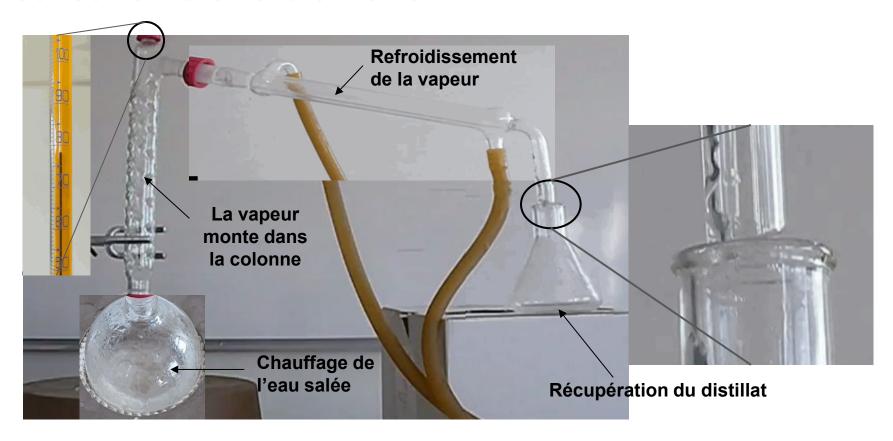
La décantation et la filtration sont des techniques de séparation permettant de passer d'un mélange hétérogène à un mélange homogène.

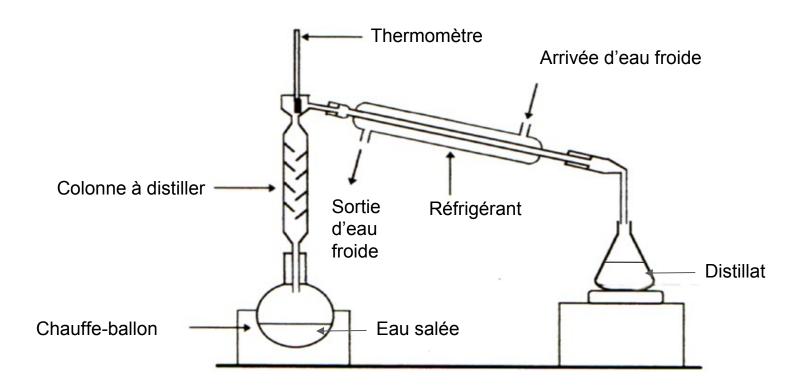


Des usines pour dessaler l'eau de mer...



Usine de dessalement de Barcelone


La distillation

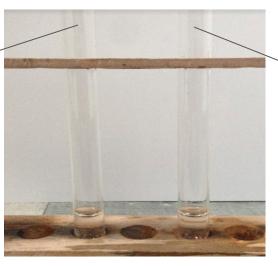

Source: Howarth, 1984, cité par Birkett (2012)

Réalisation d'une distillation

Schéma du montage de distillation

Après distillation

Ballon Erlenmeyer


Test de la présence des ions chlorure

Eau salée

Distillat

Finalement

Ballon Erlenmeyer

Ce que tu peux retenir

Un corps pur est composé d'une seule espèce chimique.

Par exemple de l'eau pure contient uniquement de l'eau.

Eau pure

Pouvons-nous la boire ?

Eau pure

Composition de l'eau du robinet à Paris

Composition moyenne en sels minéraux (en mg/l)

	LIMITES ET RÉFÉRENCES DE QUALITÉ ¹	L'EAU DE PARIS ²
Calcium		90
Magnésium		06
Sodium	200	10
Potassium	12	02
Bicarbonates		220
Sulfates	250	30
Chlorures	250	20
Nitrates	50	29
Fluor	1,5	0,17
Minéralisation totale extrait à sec à 180°C		420

¹Relatives à l'eau du robinet et aux sources, suivant le code de la santé publique.

²Analyses du Laboratoire d'Eau de Paris.

D'après l'ANSES, il est recommandé pour un enfant entre 11 et 14 ans de consommer environ 1200 mg de calcium par jour.

https://www.anses.fr/fr

Le site Ameli nous recommande de boire 1,5 L d'eau par jour.

https://www.ameli.fr/

Composition moyenne en sels minéraux (en mg/l)

	LIMITES ET RÉFÉRENCES DE QUALITÉ ¹	L'EAU DE PARIS
Calcium		90
Magnésium		06
Sodium	200	10
Potassium	12	02
Bicarbonates		220
Sulfates	250	30
Chlorures	250	20
Nitrates	50	29
Fluor	1,5	0,17
Minéralisation totale extrait à sec à 180°C		420

¹Relatives à l'eau du robinet et aux sources, suivant le code de la santé publique. ²Analyses du Laboratoire d'Eau de Paris.

Quelle masse de calcium la consommation de 1,5 L quotidienne de cette eau nous apporte-t-elle ?

Résolution

Sur Ameli, il est recommandé de boire 1,5 L d'eau au quotidien.

Tu consommes 135 mg de calcium en buvant 1,5 L de cette eau du robinet.

Observe la bouteille de jus de citron. Quel type de mélange est-ce ?

A B

Homogène hétérogène

Observe la bouteille de jus de citron.
Quel type de mélange est-ce ?

A B

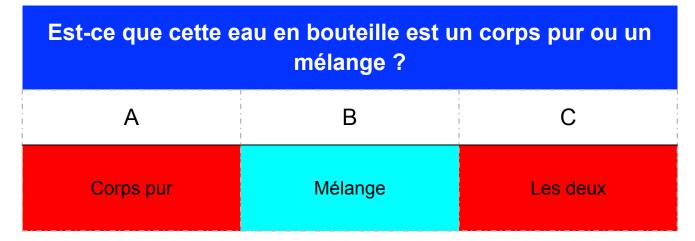
Homogène hétérogène

Image 2

Quelle image correspond à une décantation ? Quelle image correspond à une filtration ?

Image 1

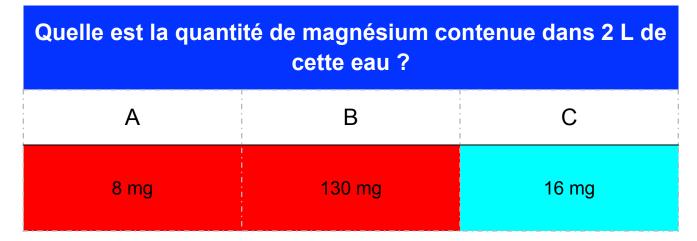
Image 2


Filtration

Décantation

Analyse caractéristique	mg/litre
calcium	11.5
magnésium	8.0
sodium	11.6
potassium	6.2
chlorures	13.5
nitrates	6.3
silice	31.7
bicarbonates	71.0
Minéralisation totale (résidu à sec à 180°C) - pH : 7	130

Est-ce que cette e	au en bouteille est u mélange ?	n corps pur ou un
Α	В	С
Corps pur	Mélange	Les deux


Analyse caractéristique	mg/litre
calcium	11.5
magnésium	8.0
sodium	11.6
potassium	6.2
chlorures	13.5
nitrates	6.3
silice	31.7
bicarbonates	71.0
Minéralisation totale (résidu à sec à 180°C) - pH : 7	130

Analyse caractéristique	mg/litre
calcium	11.5
magnésium	8.0
sodium	11.6
potassium	6.2
chlorures	13.5
nitrates	6.3
silice	31.7
bicarbonates	71.0
Minéralisation totale (résidu à sec à 180°C) - pH : 7	130

Quelle est la quanti	ité de magnésium co cette eau ?	ntenue dans 2 L de
Α	В	С
8 mg	130 mg	16 mg

Analyse caractéristique	mg/litre
calcium	11.5
magnésium	8.0
sodium	11.6
potassium	6.2
chlorures	13.5
nitrates	6.3
silice	31.7
bicarbonates	71.0
Minéralisation totale (résidu à sec à 180°C) - pH : 7	130

Merci de nous avoir suivis!

A bientôt!

